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Coccinellidae function in complex food webs as predators, as consumers of non-prey foods, and as prey or
hosts of natural enemies. Dietary breadth and its implications remain largely unexplored. Likewise the
nature and implications of interactions with other predators in the field are poorly understood. The
use of biochemical tools based on nucleic acids, proteins, sugars and other components of coccinellid
diets, expands our understanding of their trophic ecology — but only under field conditions in which cocc-

Key Wo.rdS: inellids live, reproduce, forage, and consume prey (including intraguild prey), pollen, fungi, nectars, and
E(‘)‘(’Jlggv‘vceatl) control other foods. We review the various methods which have been applied to the study of trophic relation-
Intraguild predation ships involving the Coccinellidae, their advantages and disadvantages, and some salient innovations
Lady beetle and results produced by the range of technologies and their combinations. We advocate employing multi-
Nutrition ple tools to generate a more complete picture of the trophic ecology of a predator. The false perceptions of
Predator the strength and direction of trophic linkages that can result from a methodologically narrow approach

Gut analysis are well illustrated by the laboratory and field assessments of coccinellids as intraguild predators, a phe-
PCR nomenon that is discussed in detail here. Assessing intraguild predation, and the breadth of prey and

Immunoassay non-prey foods of the Coccinellidae, is essential to the understanding of this group, and for their applica-
}:ﬁ:;gliz;mlyms tion as biological control agents.
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1. Trophic roles of Coccinellidae

Entomophagous coccinellids are major consumers of prey, but
are themselves prey for intraguild predators. The processes of find-
ing food and avoiding predation ultimately shape many of the
behaviors of lady beetles and the ecological services they provide.
Our current knowledge of the dietary breadth of coccinellids is
incomplete; it also arises from a variety of approaches and tools
used to examine trophic linkages. Likewise, assessments of the
strength and outcome of intraguild interactions among coccinellids
and other natural enemies are imperfect, and can vary depending
on the experimental or observational approaches that are
employed.

Coccinellid feeding behavior is much more complex than the
stereotype of the aphid-eating lady beetle would suggest. This is
not to say that aphidophagous species are unimportant; their con-
servation and augmentation within cropland can help suppress
aphid outbreaks (van Emden and Harrington, 2007; Lundgren,
2009b; Obrycki et al., 2009). But the family Coccinellidae evolved
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from coccidophagous ancestors, and much of the extant diversity
in the family still specializes on this prey group (Giorgi et al.,
2009; Hodek and Honék, 2009). Certain clades have also come to
specialize on aleyrodids (Hodek and Honék, 2009), mites (Bidding-
er et al., 2009), fungi (Sutherland and Parrella, 2009), plant foliage
(Hodek and Honék, 1996; Giorgi et al., 2009), and even pollen (Ho-
dek and Honék, 1996). Alternative foods such as lepidopteran and
coleopteran immatures (Evans, 2009) and non-prey foods (Lund-
gren, 2009a) are critical components of optimal diets in most cocc-
inellids, and shape the natural histories of these and other
predators (Lundgren, 2009b). As a group, coccinellids are extre-
mely polyphagous; and it is increasingly apparent that species
and individuals are in many instances quite polyphagous as well.
The simple fact is that there is not a single species for which the
entire dietary breadth is known.

The abundance, dispersion, and pest management benefits of
coccinellids are influenced by their suite of natural enemies. Para-
sitoids, parasites (mites) and pathogens (nematodes, viruses, pro-
tozoa, bacteria, and fungi) are widespread in many coccinellid
populations (Riddick et al., 2009), and their geographic and host
ranges have expanded with the anthropogenic redistribution of
coccinellids used in biological control. Perhaps equally important
are intraguild predators (including other coccinellids) that regu-
larly consume coccinellid eggs (Harwood et al., 2009) and larvae
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(Lucas, 2005; Pell et al., 2008), and ants that defend herbivorous
prey from coccinellid predation (Majerus et al., 2007). Pressure
from intraguild competitors and other natural enemies drives cocc-
inellid spatio-temporal distributions on many scales, as well as
their predation capacity, defensive characteristics, and reproduc-
tive decisions (Seagraves, 2009). These intraguild interactions not-
withstanding, coccinellids and other natural enemies are now well
recognized as operating additively or synergistically in pest sup-
pression (Snyder, 2009).

Research on coccinellids has advanced mankind’s concepts of
pest management, the nutritional physiology of insects, and how
insects function within complex food webs. However, the complex
nature of coccinellid trophic ecology must be appreciated and
accommodated for their pest management benefits to be fully real-
ized. Specifically, the dietary breadth of coccinellids can only be
fully evaluated using multiple diagnostic methods that account
for the polyphagous tendencies of these predators in both space
and time. This point is well illustrated by the recent scientific
attention devoted to intraguild interactions involving coccinellids,
discussed in Section 2. The wide breadth of tools currently applied
to assess the diets of predators (and coccinellids in particular) can
help to resolve (1) the relative contributions of different foods to
the nutritional ecology of coccinellids, and (2) the influence of
intraguild predation (IGP) interactions on natural enemy commu-
nities comprised in part of coccinellids.

2. Caveats for dietary assessments of predators in the
laboratory: A case study involving IGP and coccinellids

The importance of using multiple techniques to evaluate the
strength of trophic interactions by natural enemies is well illus-
trated by the staggering number of studies recently published on
the relative capability of lady beetles as intraguild predators in
relation to other natural enemies. These studies have identified
that intrinsic characteristics of predator guilds (including size,
chemical and physical defenses, mandibular features, dietary
breadth, mobility, degree of satiation, etc.) influence which preda-
tor will emerge successful from an intraguild encounter. Among
natural enemies, coccinellids are comparatively large-bodied,
aggressive, and well defended against predation; all of these traits
make lady beetles frequent victors in IGP contests. But evidence
from larger scale experiments suggest that the consistently strong
trophic relationships between coccinellids and IGP competitors
measured in the laboratory are unrealistic. Ultimately, this lends
credence to our argument that multiple field-based assessment
procedures are necessary to define the role of coccinellids in IGP,
and the trophic ecology of the group in general.

2.1. IGP contests with non-coccinellid natural enemies

A number of natural enemies suffer asymmetrically from IGP by
coccinellids. Within confined conditions, anthocorids (Santi and
Maini, 2006) and predaceous Diptera larvae (Lucas et al.,, 1998;
Gardiner and Landis, 2007) usually lose IGP contests with coccinel-
lids. Parasitoid immatures within parasitized hosts are particularly
vulnerable to predation (Snyder et al., 2004; Zang and Liu, 2007;
Pell et al., 2008). Coccinellids seldom discriminate between para-
sitized and unparasitized prey (Colfer and Rosenheim, 2001; Bilu
and Coll, 2007; Zang and Liu, 2007; Royer et al., 2008), depending
on the age of the parasitoid (e.g., parasitoid pupae or mummies are
sometimes less preferred than developing endoparasitoids) (Chong
and Oetting, 2007; Zang and Liu, 2007; Hodek and Honék, 2009).
Entomopathogens residing in infected prey are also consumed by
coccinellids, and thus these pathogens’ ability to suppress a pest
population may be reduced by IGP (Pell et al., 2008; Roy et al.,
2008). However, even when coccinellids are successful intraguild

predators, heterospecific intraguild prey are often poor quality
for coccinellids relative to their preferred prey (Phoofolo and
Obrycki, 1998; Santi and Maini, 2006; Royer et al., 2008), and
IGP is often reduced when alternative prey becomes available
(De Clercq et al., 2003; Yasuda et al., 2004; Cottrell, 2005).

Although coccinellids are often successful intraguild predators,
they also are victims of IGP. Ants that tend hemipterans are partic-
ularly hostile toward foraging coccinellid adults and larvae,
although the intensity of these interactions depends on the species
involved (Majerus et al., 2007). Adult coccinellids are usually
chased away by ants, and larvae are moved away from the prey
colony, pushed off of the plant, or killed (Majerus et al., 2007). Pen-
tatomids also overcome coccinellid immatures in intraguild con-
tests in the laboratory (Mallampalli et al., 2002; De Clercq et al.,
2003; Pell et al., 2008). Lacewing larvae (chrysopids and hemerobi-
ids) fare well in IGP contests against coccinellids of similar or smal-
ler size (Lucas et al., 1998; Michaud and Grant, 2003; Santi and
Maini, 2006; Gardiner and Landis, 2007). Finally, entomopathogens
may also harm the intraguild predators that eat infected prey;
aphids infected with the entomopathogen Neozygites fresenii (Now-
akowski) (Entomophthorales: Neozygitaceae) increased mortality,
prolonged development, and reduced fitness of Coccinella septem-
punctata L. versus individuals fed healthy prey (Simelane et al.,
2008).

2.2. IGP contests with other coccinellids

Coccinellid species vary greatly in their competitiveness in IGP
conflicts. Among coccinellid life stages, eggs are particularly vul-
nerable to predation, and coccinellids are behaviorally adapted to
reduce egg predation from heterospecifics (Seagraves, 2009). In
addition to predator avoidance strategies by ovipositing females
(Griffen and Yeargan, 2002; Seagraves and Yeargan, 2006; Sea-
graves, 2009), the chemical defenses present in or on coccinellid
eggs partially determine their acceptability to heterospecific pre-
dators (Sato and Dixon, 2004; Cottrell 2005, 2007; Pell et al.,
2008; Ware et al., 2008); perhaps immunity to the chemical de-
fenses of conspecific eggs is why these are such a suitable food
for many coccinellids (Burgio et al., 2002; Sato and Dixon, 2004).
Larvae are defended from predation by heterospecific coccinellids
through their chemistry, behavior and mobility, and their physical
characteristics (e.g., exterior spines or waxy secretions). Like heter-
ospecific coccinellid IGP, cannibalism is also a common phenome-
non in coccinellids, but differs in important nutritional, selective,
and evolutionary implications (Osawa, 2002; Michaud, 2003; Mi-
chaud and Grant, 2004; Omkar et al., 2006; Seagraves, 2009).

2.3. Implications of IGP for biological control

Nearly all the studies in Sections 2.1 and 2.2 assess the relative
ability of a coccinellid species to function as an intraguild predator
of a conspecific or heterospecific natural enemy within confined
experimental conditions (either a Petri dish or a “microcosm”).
For example, 73% of the 30 studies on IGP involving coccinellids re-
viewed by Lucas (2005) were conducted in the laboratory, and 10%
were conducted in field cages. These experiments are valuable in
assessing the propensity of one species to successfully attack an-
other, all else being equal. But under field conditions, habitat char-
acteristics (e.g., three-dimensional complexity and refugia),
availability of alternative food sources, activity cycles of the partic-
ipants, and avoidance and escape behaviors of potential intraguild
prey strongly influence the outcome of these interactions (Lucas,
2005; Majerus et al., 2007; Pell et al., 2008). Also, much of the re-
search to date has focused on interactions in cropland, and the
influence of IGP by and on coccinellids in natural systems remains
to be substantiated (Pell et al., 2008). Field observations of IGP



D.C. Weber, J.G. Lundgren/Biological Control 51 (2009) 199-214 201

events (e.g., Colfer and Rosenheim, 2001; Harwood et al., in press),
as well as the defensive characteristics and behaviors of natural
enemies, all support the hypothesis that IGP occurs under field
conditions and can influence insect communities and biological
control. But the results from IGP interactions obtained in the labo-
ratory or confined spaces are of questionable application to field
conditions, and should be interpreted with caution.

2.3.1. Effects of IGP by exotics on coccinellid communities
Populations of several coccinellid species endemic to North
America and Europe have experienced steep declines in recent
years, and exotic coccinellids released for biological control pro-
grams are implicated as causal agents based on abundant but cir-
cumstantial evidence (Elliott et al., 1996; Michaud, 2002; Brown,
2003; Alyokhin and Sewell, 2004; Evans, 2004; Hesler et al.,
2004; Snyder and Evans, 2006; Losey et al., 2007; Mizzell, 2007;
Hesler and Kieckhefer, 2008; Ware et al., 2009). Within North
America, Adalia bipunctata (L.), Coccinella novemnotata Herbst,
and Coccinella transversoguttata Faldermann were once the most
abundant coccinellids in many habitats. These species are now vir-
tually extinct or extirpated from certain habitats (Losey et al.,
2007). Meanwhile populations of the exotic coccinellids Coccinella
septempunctata and Harmonia axyridis Pallas abound in the habitats
where the former species used to be dominant. While it is clear
that there has been a recent shift in coccinellid communities in cer-
tain systems, analysis does not indisputably support that regional
reductions in coccinellid diversity are coupled with the range
expansion of invasive species (Harmon et al., 2007). Regardless,
the diminishing abundance of some native coccinellids within
agroecosystems as exotic species have increased numerically has
clear implications for biological control and insect conservation.

2.3.2. IGP and biological control under realistic conditions

The published literature suggests that IGP likely has less pro-
nounced effects on biological control than is indicated by labora-
tory experiments. The effects of IGP on biological control
ultimately depend on the relative contributions that coccinellids
and other natural enemies make to the suppression of a target pest.
Strong levels of IGP inflicted by coccinellids are not likely to im-
pede biological control in systems where coccinellids are keystone
predators, as repeatedly demonstrated under realistic conditions
(Mallampalli et al., 2002; Snyder et al., 2004; Rosenheim and Har-
mon, 2006; Gardiner and Landis, 2007; Zang and Liu, 2007; Costa-
magna et al, 2008). Another consideration is that predator
diversity often favors biological control (Losey and Denno, 1998;
Cardinale et al., 2003; Aquilino et al., 2005; Snyder, 2009), but
the long-term implications of the introductions of strong IGP com-
petitors that reduce or eliminate other intraguild members for bio-
logical control are important to consider. Nevertheless, the
example of recent IGP literature clearly indicates the ease with
which erroneous conclusions (e.g., the severe consequences some-
times inferred from laboratory IGP contests) can be drawn from a
narrow, laboratory approach to assessing the trophic ecology of
the coccinellids. A multifaceted, field-based approach that employs
observational, microscopic, biochemical, or molecular assessments
of coccinellid feeding behavior under field conditions will better
define the roles of coccinellids in food webs, both as predators
and as prey.

3. Assessing dietary breadth in lady beetles

Several methods have been used to diagnose trophic linkages
among insects and natural enemies, as well as the occurrence, fre-
quency, and impact of a predator species on target prey popula-
tions. These include direct observation of predation events,
controlled manipulation of predator and prey numbers to deter-

mine resulting effects, and detection of prey-associated markers
in predators having consumed them. Physical dissection and exam-
ination of predator guts or feces (e.g., Triltsch, 1999), are valuable,
depending on the feeding mode of the predator and the structural
integrity of identifiable food components. Prey can be marked with
radioactive (McCarty et al., 1980) or stable (Nienstedt and Poeh-
ling, 2004) isotopes or external antigenic markers (Hagler and Jack-
son, 2001); however, this limits studies to the marked subset of a
prey population. Researchers using stable isotopic patterns (typi-
cally of C and N) not involving enrichment (Hood-Novotny and
Knols, 2007) are challenged by a staggering array of different food
combinations and other variables (Daugherty and Briggs, 2007).
The self-identifying and unique biochemistries of prey species -
proteins, nucleic acids or other unique organic molecules - offer
versatile opportunities for predation detection and, potentially,
predation quantification. These methods have been used to deduce
the diets of lady beetles over the past 125 years, but each of these
methods carries strengths and weaknesses.

3.1. Observations in field, field cages, and laboratory

Observing coccinellids feeding has many strengths, but also
may bias the perceptions of the trophic ecology of coccinellids
(Thompson, 1951; Hodek and Honék, 2009). Focusing observation
efforts on a target prey can identify major predator groups that
consume this species, but this approach does not reveal other foods
consumed by generalist predators. This same caveat applies to
prey-centric studies using biochemical methods described below
in Sections 3.5 and 3.6). Moreover, those prey groups or life stages
that are sessile or easy to observe over time tend to receive dispro-
portionate attention, and may partially explain why many coccin-
ellids are so often recognized as aphid specialists. Direct
observations are extremely valuable (but scarce) in defining the
dietary breadth of a predator when they focus on the predators
themselves over a range of times and locations rather than a target
prey. For instance, direct observations have established that the
common species C. septempunctata feeds on willow and oak foliage
(Brassler, 1930) in addition to non-aphid prey (Kanervo, 1940).

3.1.1. Use of sentinel prey, and nocturnal sampling

Placing sentinel prey in the field can be very useful in assess-
ing the intensity of predation and the species responsible for
biological control. It may be especially useful where pest density
is insufficient to permit observation of adequate numbers of pre-
dators. Kidd and Jervis (1996) and Mills (1997) describe the
caveats in deploying sentinel prey, including positioning, quality,
and density considerations. Manipulation of prey density may
also lead to important insights. For example, Evans and Toler
(2007) used prey density manipulation in open alfalfa fields to
demonstrate the aggregation of native coccinellids to high aphid
density, but not to high alfalfa weevil larval densities; C. septem-
punctata responded high densities to both prey. Andow (1990,
1992) assessed predation of Ostrinia nubilalis (Hiibner) (Lepidop-
tera: Crambidae) sentinel egg masses in different corn ecosys-
tems, including that by the major coccinellid predator,
Coleomegilla maculata DeGeer.

Pfannenstiel and Yeargan (2002) and Pfannenstiel (2005) ob-
served predation on sentinel Lepidoptera eggs throughout the diel
cycle, determining that larval and adult C. maculata had distinct
periods of activity for consuming foliar prey. In spite of the wide-
spread preconception that lady beetles are diurnal, these studies
and others (Vickerman and Sunderland, 1975; Weber et al.,
2008) have discovered significant nocturnal predation. Meyhofer
(2001) used unattended 24-h video recording of parasitized and
unparasitized Aphis fabae Scopoli (Hemiptera: Aphididae) to iden-
tify and characterize behaviors of individual predators eating par-
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asitized aphids, showing that six major groups, including coccinel-
lids, nocturnally consumed immature parasitoids.

3.1.2. Manipulation of predator density

Manipulation of predator density, and testing for subsequent
changes in pest (prey) numbers and/or crop damage, is “the most
convincing test of predator impact” (Symondson et al., 2002). The
very large number of studies employing predator augmentation,
field cages, or exclusion by physical or sometimes by chemical
means (Luck et al., 1988; Mills, 1997; Obrycki et al., 2009), are be-
yond the scope of this review. In laboratory feedings and micro-
cosms, as in field cages with simplified food webs, treatments
must be based on realistic densities and species assemblages if
these results are to be relevant to the open field. Many coccinellid
studies, including IGP studies reviewed above, fail to compare
tested arenas and conditions with what might be expected in a
field ecosystem. Thus, while prey augmentation can be a powerful
tool for assessing the pest suppression capabilities of a predator,
the caveats associated with this method need to be recognized.

3.2. Gut dissections

Examining the gut contents of coccinellids microscopically is an
affordable, low-technology method that can give a very good over-
view of the full dietary breadth of a predator species. This method
only functions when solid food is ingested, and so cannot be ap-
plied to fluid-feeding life stages (e.g., neonate coccinellid larvae).
Even in those insects which ingest solid food, it is not suited to dis-
tinguishing soft, amorphous prey and plant parts, or liquids such as
honeydew and floral and extrafloral nectars, all of which may be
important components of coccinellid diets (Lundgren, 2009a,b).
As Crowson (1981, p. 161) points out, microscopic analysis of gut
contents (in common with the use of laboratory feedings) requires
“acquaintance with the natural habitat and with the sort of poten-
tial foods which are present in it.”

3.2.1. Forbes and Triltsch: The first and the most comprehensive gut
analyses

A number of researchers have dissected the guts from coccinel-
lids to determine their range of food consumption (Table 1). One of
the first of these analyses was conducted by Stephen Forbes
(1883), who examined the gut contents of several common coccin-
ellids and carabids of Illinois (USA). In virtually all coccinellid spe-
cies, fungal spores and pollen together made up approximately half
of the estimated volume of gut contents. Approximately half of the
C. maculata adult guts contained aphids with a few mites. About
54% of gut contents contained pollen and/or fungal spores. Around
40% of Hippodamia convergens Guérin-Méneville and H. glacialis
(Fabricius) adults contained arthropods (including a millipede, cat-
erpillar, aphids, and chinch-bugs). In both genera, the non-prey gut
contents included pollen of various plants, especially composites
and grasses, and fungal spores (particularly Helminthosporium
and Cladosporium). Nearly two-thirds of Coccinella novemnotata
and C. transversoguttata (n =3 each) consumed aphids; fungi and
small amounts of pollen were also found in their guts. Although
Forbes only examined a few individuals of each species, his work
was instrumental in establishing that coccinellids consume much
more than just their preferred foods such as aphids.

Only a few studies have undertaken broad dietary assessments
of coccinellids using gut analysis (Table 1); of these, Triltsch (1997,
1999) provides the best exploration of dietary spectrum for a single
polyphagous insect predator species, C. septempunctata in Ger-
many. Nearly 2000 adults and larvae from three locations near
Berlin were examined over a 2-year period. Aphids and fungal
spores were the most frequently observed foods, found in 44 and
42% of adults respectively. More than one food type was found in

68% of non-empty adult guts (calculated from Triltsch, 1999, Table
2). Non-aphid arthropod prey (found in 13% of adults) included
thrips, Collembola, mites, Hymenoptera, Diptera larvae, and cocc-
inellid larvae. Pollen was found in a maximum of 23% of adults
in May and September. In addition to the comprehensive catalog
of foods consumed by C. septempunctata, Triltsch analyzed the
sex-specific, stage-specific, seasonal, physiological, and geographic
effects on the diet of C. septempunctata, and clearly illustrated that
alternative foods are common components of this aphidophagous
species’ diet, even when aphids were extremely abundant.

3.2.2. Temporal patterns in food consumption

In addition to the diversity of foods that most coccinellids con-
sume, one of the strongest conclusions that can be drawn from
published gut content analyses is the seasonal shifts in diet expe-
rienced by most coccinellids. In part, the dietary breadth is reflec-
tive of the local food abundance available to the foraging
coccinellid (Putman, 1964; Ricci et al., 1983; Ricci, 1986a,b;
Hemptinne et al., 1988). For instance, in Australia Scymnodes livid-
igaster (Mulsant) and Ileis (=Leptothea) galbula (Mulsant) consumed
different foods on different host plants (Anderson, 1982). In Israeli
citrus orchards, Chilocorus bipustulatus (L.) switched from diaspidid
scales in spring to coccid scales later in the year, based on the rel-
ative abundances of these two food sources (Mendel et al., 1985).
Aphid consumption by Rhyzobius litura (Fabricius) peaked during
April and October (Ricci, 1986a). The central pattern in these stud-
ies is one of large and consistent seasonal variation in food con-
sumption, which exceeds year-to-year and location-to-location
effects (Ricci, 1986a,b; Triltsch, 1997, 1999).

3.2.3. Diet and physiological status

The physiological status of the coccinellid is also likely to dic-
tate which foods are consumed and when. Gut dissections of
field-collected coccinellids have revealed that adults tend to con-
sume the most food during the pre-reproductive and reproductive
phases (Anderson, 1982; Triltsch, 1999). Recently eclosed C. sep-
tempunctata adults ate more fungi, more non-aphid arthropods,
and fewer aphids, than did overwintered adults (Triltsch, 1999).
Also, females are likely to consume more food than males,
although qualitative differences in their diets have not been docu-
mented (Triltsch, 1999; Lundgren et al., 2005).

The developmental stage of the coccinellid sometimes affects
their diet. Larvae and adult coccinellids do not necessarily differ
in their diets (Ricci et al., 1983; Ricci, 1986a,b). These examples
notwithstanding, it is often the case that larvae consume different
foods than the adults, reflecting their unique predatory abilities
and nutritional needs. Lundgren et al. (2004) found similar propor-
tions of C. maculata larvae and adults consuming prey and pollen in
maize fields. However, in the same study, larvae of H. axyridis were
much more likely to consume pollen than were adults of this spe-
cies. In C. septempunctata, although larval and adult diets were sim-
ilar, the larvae ate less pollen and more conspecifics than did adults
(Triltsch, 1999).

3.2.4. Gut dissections and the overemphasis on prey specialization
Gut dissections often reveal the importance of alternative foods
to the trophic ecology of coccinellids, even in the presence of essen-
tial prey (sensu Hodek and Honék, 1996). Even when essential prey is
widely available, it may constitute only a fraction of a coccinellid’s
diet (Anderson, 1982; Ricci et al., 1983; Ricci, 1986a,b; Ekbom,
1994; Triltsch,1999; Lundgren et al., 2004; Ricci and Ponti, 2005;
Ricci et al., 2005). Gut dissections may identify previously unknown
essential foods, such as pollen and fungi for the aphidophagous R.
litura (Ricci, 1986a; Ricci et al., 1988). Also important, gut dissections
reveal that coccinellids often simultaneously consume numerous
species of prey (sometimes as many as five or six prey species),
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Table 1 (Continued)

Predator species (coccinellid adults
unless noted, with number of

individuals dissected)

Reference

Techniques

Objective(s)

Location

Habitat

Determine if H. convergens can spread the dogwood

lab, on dogwood
(Cornus florida L.)

Examination of frass for viable spore counts of Discula

destructiva Redlin (Fungi imperfecti) conidia

USA:

Hed et al. (1999)

anthracnose fungus in its frass, and if chaser diet has an

effect

Hippodamia convergens

Tennessee

(Cornales: Cornaceae)

Coleomegilla maculata

Hand collection before and during pollen-shed, with

Lundgren et al.
(2004)

Investigate pollen consumption relative to predator for two

common coccinellids (adults and larvae) in cornfields

corn field before and
during pollen-shed

(31 adults, 26 larvae)
Harmonia axyridis (Pallas)

subsequent dissection to determine proportion of gut contents

which was corn pollen

USA: lllinois

(28 adults, 190 larvae)

Hand collection of larvae and adults, with subsequent

Coleomegilla maculata

Lundgren et al.
(2005)

Quantify pollen consumption by C. maculata larval instars

and adults, under lab and field conditions

corn field during pollen-

shed

dissection and quantification of pollen in adult and larval guts,

compared to lab feeding

USA: lllinois

(40 adults, 45 2nd, 36 3rd, and

90 4th instar larvae)

subalpine and alpine

pastures and

Ceratomegilla notata

Ricci and Ponti

(2005)

D.C. Weber, J.G. Lundgren /Biological Control 51 (2009) 199-214

D-vac with subsequent dissection

Study abundance, diet, and foraging behavior

Italy: Alps

(Laicharting)

meadows, 800-1700m

(180 adults and 120 larvae)

Ricci et al.

D-vac with subsequent dissection of gut contents and (?) frass (2005)

Italy: Tiber
Valley and

Alps

8 different habitats,

200-2000m

Coccinella septempunctata

Determine Coccinella septempunctata prediapause diet

(240 adults)

thereby seriously calling into question any degree of specialization
in these often polyphagous predators (Putman, 1964; Anderson,
1982; Riccietal., 1983; Ricci, 1986a,b; Triltsch, 1999; Ricci and Ponti,
2005). Finally, non-prey foods, including plant trichomes, pollen,
fungal spores and inorganic debris, are frequently consumed concur-
rently with prey, and even more intensively when prey becomes
scarce (Forbes, 1883; Putman, 1964; Anderson, 1982; Ricci et al.,
1983; Hemptinne and Desprets, 1986; Ricci, 1986a,b; Hemptinne
et al., 1988; Triltsch, 1999; Ricci and Ponti, 2005; Ricci et al., 2005;
Lundgren, 2009a,b).

3.2.5. Strengths and weaknesses of gut dissections

Gut dissection remains a straightforward and productive meth-
od for rapid low-cost dietary assessment, which often identifies
unexpected contents. Triltsch (1999) points out that the gut dissec-
tion technique fails to detect insect egg consumption, which may
be significant for coccinellids. Prey are not equally easy to identify
or to count. Small prey such as thrips and aphids are often easily
identified in gut contents, but the necessary fragmentation of large
prey such as Oulema (Coleoptera: Chrysomelidae) and Coccinella
larvae present more of a challenge. Another important point is that
not all gut contents are intentionally consumed (Putman, 1964;
Triltsch, 1999). For example fungal spores are often consumed inci-
dentally with honeydew meals. Studies of specific foraging behav-
iors may shed light on intent, and analysis of nutritional qualities
of different diets may shed light on value (see Lundgren,
2009a,b). There is no assurance that unintentionally ingested
materials lack value, nor that intentionally ingested foods are valu-
able. Gut dissections simply reveal that the current knowledge of
coccinellid diet is incomplete, at best.

3.3. Frass analysis

In spite of its widespread use in other studies on animal feeding
ecology (Litvaitis, 2000), only four researchers have analyzed the
frass of coccinellids to yield insights on their diet (Table 1). Conrad
(1959) stationed sticky surfaces beneath sentinel egg masses of
European corn borer O. nubilalis, to capture frass of Coleomegilla
maculata. On average 16% of egg masses were partially consumed,
and predation frequency on O. nubilalis eggs decreased as aphids
and corn pollen increased in the corn field. This is the only pub-
lished example that used frass identification to investigate preda-
tion by coccinellids under field conditions. Putman (1964) and
Ricci et al. (2005) make non-specific reference to the diet determi-
nation of coccinellids using frass examination, but the intensity of
their efforts is unclear.

Honék (1986) used frass production as an estimate of prey con-
sumption and predator satiation. Although this study did not dis-
tinguish dietary components, measurements of frass production
in field-collected C. septempunctata led to the conclusion that most
predators are far from satiated over the course of a growing season,
an ingenious answer to an oft-posed ecological question.

Frass analysis is unlikely to yield markers for specific prey, and
is not associated easily with specific predators in the field. How-
ever, association of predator- and prey-specific markers, as with
mammalian studies (e.g., Deagle et al., 2006), has not been at-
tempted. Quantification and analysis of frass is likely to be useful
in laboratory and other controlled experiments concerning diges-
tive dynamics and energetics of predator nutrition and physiology.

3.4. Isotopic methods

Radioactive labeling, stable isotopic or elemental labeling, and
stable isotope analysis of natural patterns in the field are the three
main applications of isotopic analysis in diagnosing trophic link-
ages between coccinellids and target prey.
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3.4.1. Radiolabeled prey

Herbivores, or the plants on which they feed, can be labeled
with radioisotopes (e.g., >?P, 3H, or '*C). 3P injected into thistle
plants bioaccumulated into three coccinellid species, presumably
via the herbivore Anuraphis sp. (Pendleton and Grundmann,
1954). Independent calibrations are necessary to quantify the con-
sumption of the marker by each predator species, since each re-
tains the markers for different amounts of time (Garg and
Gautam, 1994). Room (1979) and Thead et al. (1987b) used radio-
labeled heliothine moth eggs and larvae to identify predators,
including coccinellids, and Thead et al. (1987b) quantified preda-
tion in field cages, correcting for the rate of marker retention in
respective predators (Thead et al., 1987a). Radiolabeling is hazard-
ous to the environment and to researchers, and its persistence
within a food web can lead to IGP and scavenging being misdiag-
nosed as predation. Its application is restricted to specialized tro-
phic and metabolic studies in the laboratory, some of which may
also be addressed through stable isotopic enrichment techniques.
Nevertheless, laboratory studies of food and water dynamics have
successfully used radiolabeling to address a number of trophic
relationships involving coccinellids (Ferran et al., 1981; Taylor,
1985; Houck and Cohen, 1995; Holte et al., 2001).

3.4.2. Stable isotopic and elemental enrichment

Enrichment of suspected prey or other food items such as nectar
or pollen with stable isotopes such as N and ®0 (Hood-Novotny
and Knols, 2007), or rare elements such as Rb (Akey et al., 1991),
has been used to identify and investigate predation by coccinellids.
Nienstedt and Poehling (2004) used open-topped field enclosures
in wheat with laboratory-raised '>N-enriched aphids to determine
predation by carabids, staphylinids, spiders, and coccinellids. C.
septempunctata and Propylea quatuordecimpunctata (L.) contained
the isotopes, but this signature could have originated from other
prey species since the barriers did not restrict the movement of
these predators. Steffan et al. (2001) found that H. convergens ac-
quired >N enrichment when they consumed nectar of Chinese
cabbage which had been fertilized with enriched KNO5 fertilizer.
Rb marking (see Akey et al., 1991) has been used to mark the phy-
tophagous coccinellid, Epilachna varivestis Mulsant (Shepard and
Waddill, 1976), and various predators including H. convergens
and Scymnus loewii Mulsant in a cotton-sorghum system (Prasifka
et al., 2001). Of the isotopoic methods, stable isotopic enrichment
and elemental enrichment may prove the most useful for specific
questions, where technology is available for atomic absorption
spectrometry, and the residence time for the enrichment compo-
nent is appropriate to the coccinellids under study.

3.4.3. Diagnosing trophic relationships using naturally occurring stable
isotopes

Based on distribution of '3C and '°N in plants and their respec-
tive herbivores, field and laboratory studies have established that
isotopic proportions in predaceous coccinellids are responsive to
dietary changes and thus are potentially useful in studying trophic
relationships (Scrimgeour et al., 1995; Ostrom et al., 1997; Prasifka
et al., 2004; Gratton and Forbes, 2006; Park and Lee, 2006). Gratton
and Forbes (2006) established that different tissues within H. axy-
ridis and C. septempunctata registered 3'3C in response to changes
in their diets from aphids on soy (C3 plant) to aphids on corn (C4
plant). In theory, this raises the prospect for more intricate tracking
of trophic dynamics. In practice, stable isotope ratios may be pro-
duced by a large range of different food combinations, as well as
species- and stage-specific physiological effects in prey and preda-
tors; therefore, application of this method appears to involve too
much complexity to yield clearcut conclusions in trophic studies
(Daugherty and Briggs, 2007).

3.5. Immunoassay methods

Methods to assess predation that are based on mammalian im-
mune reactions or cell lines have been in use for about 60 years,
and possess a wide range in specificity and sensitivity, from early
precipitin tests to highly specific and sensitive monoclonal anti-
body-based ELISA methodology (Greenstone, 1996; Harwood and
Obrycki, 2005). Early predation studies focused on fluid-feeding
predators such as predatory Heteroptera and spiders, or prey not
amenable to gut dissection, such as Lepidoptera eggs and larvae
(see Table 11.1, Greenstone, 1996). Because of this taxonomic
selectivity in application of immunoassays, or possibly because
coccinellids were uncommon in the systems investigated, they
are less represented in early predation studies. For instance, Vick-
erman and Sunderland (1975) examined over 600 predators of 24
species for aphid consumption, using microscopic gut analysis for
coccinellid larvae and adults, carabids, and adult staphylinids,
but using precipitin testing for all others.

About 20 published studies (Table 2) have used immunoassays
to examine coccinellid predation. Many of these (e.g., Ashby, 1974;
Whalon and Parker, 1978; Hagley and Allen, 1990) tested a wide
range of predators to identify important consumers of a focal pest.
Some of the most extensive immunoassay-based predator analyses
involving coccinellids were conducted by Hagler and Naranjo
(1994, 1996, 1997), who studied predation of whiteflies and pink
bollworm eggs by H. convergens in Arizona using prey-specific
monoclonal antibodies. Based on frequency of detection, coccinel-
lids were determined to be unimportant predators in some cases
(e.g., Whalon and Parker, 1978) and very important predators in
others (e.g., Hagley and Allen, 1990; Huang et al., 1992). Early
workers (Dempster, 1960; Rothschild, 1966) already recognized
the difficulties with translating detection frequency into a quanti-
tative measure of predation, a conundrum which continues to chal-
lenge researchers (Hagler and Naranjo, 1996; Sunderland, 1996).
However, quantitative ELISA (Symondson et al., 2000; Harwood
et al., 2004) provides more information for each sampled predator
(as with qPCR versus conventional PCR, discussed below), informa-
tion which can be related to quantity of prey consumed.

Marking of predators with common antigens (Hagler and Jack-
son, 2001) can be combined with prey-specific immunoassays
(Hagler and Naranjo, 2004) to provide insights into movement
and prey consumption of both endemic and released predators.
Marking prey with inexpensive, user-friendly antigens can be ap-
plied to efficiently detect prey consumption by numerous preda-
tors (100s or 1000s), but is unreliable for piercing-sucking
species (Hagler and Durand, 1994). Recently, Mansfield et al.
(2008) compared prey-specific indirect ELISA with an anti-rabbit
IgG prey marker using sandwich ELISA, for predation detection in
a coccinellid and a melyrid predatory beetle in Australia cotton,
and judged the detection of the marker to be more specific and
sensitive. But sensitivity, especially in larger predators such as
many coccinellids, depends on the specifics of the ELISA format
used (Hagler, 1998). Marking of prey is an extra step which is use-
ful only for certain research applications (Hagler and Jackson,
2001). Horton et al. (2009) have measured movement of generalist
predators - coccinellids, chrysopids, and Heteroptera, and spiders
- from different cover crops to pear orchard canopy, using inex-
pensive egg albumin immunomarker and ELISA (see Jones et al.,
2006). The coccinellid Hyperaspis lateralis Mulsant showed the
greatest proportion of cover-crop markers among canopy-captured
predators, suggesting unexpected feeding on marked prey in the
cover crops in addition to known predation on mealybug and scale
insect prey on pear trees.

Immunoassays specific for Bt Cry proteins produced by trans-
genic crops can be used to track tritrophic interactions within
transgenic cropland. For instance, Harwood et al. (2005, 2007b)
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showed that coccinellids, particularly C. maculata, acquire the Cry
toxin from Bt field corn before pollen-shed, and peak detection
was well after anthesis. This led to the conclusion that the preda-
tors must have ingested Bt-containing prey or plant parts other
than pollen (see Moser et al., 2008).

3.6. DNA-based methods

Polymerase chain reaction (PCR) has within the past decade
been applied to detect DNA of target prey within the guts of cocc-
inellids (Table 2). Only a few of these studies have applied PCR to
answer trophic questions in the field, whereas several carabid
and spider predation studies have involved far more field sampling
(e.g., see Harwood and Greenstone, 2008; Lundgren et al., in press).
The goal of most PCR-based analyses has been to demonstrate the
viability of a specific detection system in the laboratory, some-
times including a few field samples. From this work it is clear that
the detection of prey DNA may depend on a large number of fac-
tors. These include the choice of marker sequence and particularly
its length; time since feeding; temperature; species, physiological
state and mass of predator; ingestion of target or other food mate-
rial before, during, and after predation on the prey of interest;
quantity of prey; number of DNA sequences in the prey (depending
in turn on life stage and cell number, number of nuclear or mito-
chondrial (or other) copies of sequence present per cell); and pres-
ervation of the sample (Sheppard and Harwood, 2005; Weber and
Lundgren, 2009).

Prey DNA may be detected as a result of scavenging or second-
ary predation, which are considered false positives or erroneous
detections when predation of live prey is of interest (Sheppard
et al., 2005; Juen and Traugott, 2005). These quantitation issues,
as well as potential sources of false positives, are shared with
immunoassay methods (Hagler and Naranjo, 1996; Harwood
et al., 2001; Calder et al., 2005). Since predators may differ radically
in their digestion rates, species- and stage-specific determination
of marker disappearance is necessary for each species when rank-
ing their relative contributions to the suppression of a target prey
(Greenstone et al., 2007). Hoogendoorn and Heimpel (2001) em-
ployed markers of four different lengths to improve determination
of time since prey consumption, based on the more rapid disap-
pearance of longer markers, which is in accord with disintegration
of DNA markers expected by random ligation (Deagle et al., 2006).

Quantitative PCR (qPCR, also known as real-time PCR) has sev-
eral traits that suggest it may eventually supplant conventional
PCR, in part because of its ability to reduce both analysis time
and the subjectivity of the results: it relies on flourometric quanti-
tation rather than visual band detection on an agarose gel, and al-
lows the verification of the precise target DNA sequence based on
its melting temperature. Used widely in medicine and forensics,
qPCR has been applied to predation investigations involving sev-
eral non-coccinellid systems (Deagle et al., 2006; Troedsson
et al., 2007; Nejstgaard et al., 2008; Lundgren et al., in press). With
respect to coccinellids, Zhang et al. (2007b) quantified the amount
of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) DNA con-
sumed by Propylea japonica (Thunberg) using qPCR, and related it
to initial meal size and time since consumption in the laboratory.
Weber and Lundgren (2009) demonstrated the value of qPCR for
quantification of Leptinotarsa decemlineata (Say) (Coleoptera:
Chrysomelidae) eggs by C. maculata, with quantitation of number
of eggs consumed, and effect of subsequent meals on the retention
of the DNA marker, for which the quantitative half-life ranged from
16 to 59 min. Additionally, marker DNA quantity and frequency of
detection allowed the ranking of commonly-used sample preserva-
tion protocols such as freezing and placing samples in ethanol,
demonstrating their critical importance to PCR-based gut analyses.
Quantitative PCR adds additional information when measuring

predation compared to conventional PCR, but as with conventional
PCR, preliminary laboratory studies need to be performed on a
study system before clear interpretations of field measures of prey
consumption are possible.

Detection of arthropod prey has been the focus of gut analysis
studies for coccinellids and other predators, but PCR methods
may also be used to detect plant tissues consumed by insect herbi-
vores (Matheson et al., 2008; Jurado-Rivera et al., 2009). PCR de-
tects fungi and pollen consumed by coccinellids (Lundgren and
Weber, unpublished data). Plant and fungal foods have been lar-
gely neglected in arthropod studies using biochemical techniques,
in spite of widespread success with detecting fungi (Atkins and
Clark, 2004), pollen (Zhou et al., 2007) and other plant tissues (Ferri
et al., 2008) in environmental samples. PCR methods also have a
variety of other applications to studies of coccinellids, their food,
and natural enemies. PCR is seeing wide use in diagnosis and iden-
tification of parasites (e.g., male-killing bacteria in Coccinellidae;
Majerus, 2006) and also for parasitoids (although not so far in
the Coccinellidae) (Harwood and Greenstone, 2008). Other molec-
ular methods such as temperature gradient gel electrophoresis
(Harper et al., 2006) may come into use in predation studies as
the field continues its meteoric development.

3.7. Gas chromatography-mass spectrometry of coccinellid-specific
alkaloids

Coccinellids produce species-specific alkaloids (Glisan King and
Meinwald, 1996) which are quantifiable by GC-MS, and may be
useful in identifying key intraguild predators of coccinellids (Hau-
tier et al., 2008; Sloggett et al., 2009). The alkaloids produced by A.
bipunctata and C. septempunctata were detectable in H. axyridis
that consumed these intraguild prey in the laboratory (Hautier
et al., 2008). Moreover, these intraguild prey-based alkaloids are
persistent within the predator (Sloggett et al., 2009); adaline
was detectable through pupation in H. axyridis fed A. bipunctata
(Hautier et al., 2008). Sloggett et al. (2009) demonstrated they
could distinguish six common species in Kentucky using a combi-
nation of nine alkaloids present in one or more species. Hautier
et al. (2008) detected exogenous coccinellid alkaloids from three
different species in nine of 28 field-collected H. axyridis. This
method, if applied to field research, has the potential advantage
of at least somewhat quantitative measurement of multiple prey
markers in a single predator (Sloggett et al., 2009) for analysis
of intraguild or higher-level (vertebrate) predation of coccinellids.
Longer persistence of some coccinellid alkaloids (Hautier et al.,
2008) could increase the potential for false positives by IGP of
an intraguild predator.

3.8. Other techniques for trophic analysis of Coccinellidae

Electrophoretic detection of prey (Solomon et al., 1996) has
been used in predation studies, but not with the Coccinellidae,
and its use has been supplanted by other biochemical techniques.
Specific biochemicals present in the prey may affect coccinellids
preying upon them (Hodek and Honék, 2009), including alkaloids
of legumes, quantified in aphids for their effect on three coccinel-
lids eating them (Emrich, 1992).

Magnetic resonance microscropy (MRM, an attunement of MRI)
has been used for detecting endoparasitoids and for visualizing the
effects of diet on internal organs of C. septempunctata (Geogehegan
et al., 2000). Although Greenstone (2006) judged MRM of little po-
tential use in distinguishing meals ingested, nor for identifying
parasites or parasitoids, there may be applications in distinguish-
ing parasitized and non-parasitized insects for biological control
introductions and for examining endoparasitic development.
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Fig. 1. Coccinellid gut content studies, by method, versus year of publication.

Sugar is another important food source for coccinellids as evi-
denced by the number of coccinellids known to consume sugar
sources under field conditions and the importance of sugars in sup-
porting various life processes in coccinellids (Lundgren, 2009a).
Glucophagy under field conditions has only been recorded from di-
rect observations. However, the methodology developed for exam-
ining sugar feeding in adult mosquitoes and hymenopteran
parasitoids is easily transferable to study in coccinellids. These
methods include the application of the colorimetric anthrone re-
agent (which allows the detection and quantification of fructose
and sucrose within insect stomachs) (Olson et al., 2000; Heimpel
et al,, 2004) or the use of TLC, GC, or HPLC to detect specific
mono-, di-, and oligo-saccharides in the stomachs of an insect
(Heimpel et al., 2004).

3.9. Challenges and trade-offs in application of methods to coccinellid
trophic relationships

Methods for gut analysis have evolved as biochemical methods
have become available (Fig. 1). Gut dissections, immunoassays, and
PCR, along with several other methods mentioned above, are all
useful in assessing the trophic ecology of coccinellids. Careful
observations and manipulations, coupled with gut dissections
and more recently with biochemical methods to measure food con-
sumption, have yielded a trophic tapestry for lady beetles, which
even for so-called specialists often includes a wide array of arthro-
pod, fungal, and plant-derived foods. The two leading biochemical
methods for prey detection are antibody-based analysis of prey
proteins, and polymerase chain reaction (PCR)-based analysis of
unique prey DNA sequences. In concert with gut dissection to iden-
tify the spectrum including previously unknown dietary compo-
nents, PCR will probably develop as the leading method for
trophic quantification, but not supplanting immunological meth-
ods, which have some advantages as well as economy of scale. Each
of these techniques has advantages and disadvantages. In general,
immunoassays are more expensive to develop, but much less
expensive per sample to use once developed (a 15-fold difference,
Fournier et al., 2008; or 24- to 32-fold, Harwood and Greenstone,
2008), and are able to distinguish amongst different life stages of
the same prey based on respective proteins present (e.g., Green-
stone and Trowell, 1994; Sigsgaard, 1996). Studies with immuno-
assays can be based on larger field samples (over 10,000 in two
cases, Hagler and Naranjo, 1996, 2005), with the more power to
provide meaningful ecological answers. PCR-based methods offer
more rapid and inexpensive development, and transferability
based only on the information contained in the marker nucleic acid
sequence. So far, PCR application to studies of the Coccinellidae has
generally involved too few samples in the field, perhaps a conse-

quence of their much higher per-sample marginal expense. Only
a very few studies using biochemical methods have sought to an-
swer questions of relevance to coccinellid biological control. Care-
ful and realistic manipulations in the field, along with greater
sample size and replication, will allow both more precise trophic
determinations, whatever predation detection methods are used,
and potential evaluations of the value of habitat modifications
and food supplementation in the effective management of Cocci-
nellidae for biological control.

4. Coccinellidae: A complex trophic ecology

The Coccinellidae are a ubiquitous and highly diversified beetle
group (Giorgi et al., 2009). In spite of the volume of research into
their evolution, behavior, and physiology, the breadth and diversity
of trophic ecology within the group as a whole - and also within
tribe, genus, species, populations, and for individuals - remains
to be fully substantiated and as a result is underappreciated. In an-
swer to the question, “are we studying too few taxa?” (Sloggett,
2005), the answer is yes. But also, we apply too few techniques
and ignore the biases inherent in each technique, a fact well illus-
trated by the demonstrated implications of laboratory based
assessments of IGP contests involving coccinellids. Application of
a combination of careful experimental designs, manipulations
and observations with increasingly accessible technology, includ-
ing biochemical methods, will enhance understanding of this
group, and the corresponding application of biological control as
a lynchpin of sustainable pest management.
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